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This paper addresses the effects of solid boundaries on the evolution of two-
dimensional turbulence in a finite square domain, for the cases of both decaying
and continuously forced flow. Laboratory experiments and numerical flow simulations
have revealed the crucial role of the solid no-slip walls as sources of vorticity filaments,
which may significantly affect the flow evolution in the interior. In addition, the walls
generally provide normal and tangential stresses that may exert a net torque on the
fluid, which can change the total angular momentum of the contained fluid. For the
case of decaying turbulence this is observed in so-called ‘spontaneous spin-up’, i.e. a
significant increase of the total angular momentum, corresponding to a large domain-
filling circulation cell in the organized ‘final’ state. For the case of moderate forcing
this phenomenon may still be observed, although the filamentary vortex structures
advected away from the walls may cause erosion and possibly a total destruction
of the central cell. This disordered stage – characterized by a significantly decreased
total angular momentum – is usually followed by a re-organization into a large
circulation cell (in either the same or opposite direction) with an increased total
angular momentum. The scaling behaviour of vorticity structure functions and the
probability distribution function of vorticity increments have been investigated for
forced turbulence and indicate a strong anisotropy of the turbulent flow in the range
of Reynolds numbers considered.

1. Introduction
Two-dimensional turbulent flows are characterized by the inverse energy cascade,

i.e. by a spectral flux of kinetic energy to smaller wavenumbers. This applies in
particular to the case of statistically steady forced flow, in which the overall kinetic
energy input is in balance with the energy dissipation at the smallest scales of the
flow. In the case of decaying turbulence – in which the flow is initialized at t =0
and subsequently allowed to evolve – the so-called selective decay mechanism also
plays an essential role, according to which the flow structures at smaller length scales
decay faster than those at larger scales (see Matthaeus & Montgomery 1980). In fact,
this mechanism then competes with the inverse energy cascade. In either case, the
flow has a tendency to form larger, coherent vortex structures. This behaviour was
shown for the case of decaying turbulence in numerical simulations by Matthaeus &
Montgomery (1980), McWilliams (1984), and Santangelo, Benzi & Legras (1989). For
an overview of the theory of two-dimensional turbulence we refer to Kraichnan &
Montgomery (1980), and for some recent experiments the reviews by Tabeling
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(2002) and Kellay & Goldburg (2002) can be consulted. Most of the experiments
discussed in these reviews disregard the role of (no-slip) boundaries. The present
paper addresses the effect of no-slip boundaries on the evolution of two-dimensional
turbulence.

In a numerical simulation of decaying two-dimensional turbulence on a bounded,
circular domain Li & Montgomery (1996) and Li, Montgomery & Jones (1996, 1997)
observed flow behaviour that is completely different from that on a double-periodic
domain; details of the flow evolution were found to depend to some degree on
the type of boundary conditions applied, i.e. stress-free or no-slip. Experiments on
decaying turbulence in linearly stratified and in two-layer fluids in circular containers
by Maassen, Clercx & van Heijst (1999, 2002) confirmed the decay process as reported
by Li et al. (1997).

In their numerical study of decaying turbulence in a square domain with solid walls,
Clercx et al. (1999) found similar effects of the boundaries. In particular for the case
of no-slip boundary conditions, the walls play an active role in the flow evolution,
namely as sources of filaments of high-amplitude vorticity. Whenever a (small-scale)
vortex structure approaches a solid no-slip wall, a boundary layer is formed that
contains opposite-signed vorticity. This boundary layer is partially ‘scraped off’ from
the wall in the form of a long vorticity filament that may be wrapped around the
vortex or otherwise be advected into the interior of the flow domain. This process
of vorticity filament production at the no-slip walls continues even during the later
stages of the flow evolution when the domain is filled with large-scale vortices. It
also has a significant effect on the spectral characteristics of the turbulence, as was
revealed in a numerical study by Clercx & van Heijst (2000).

While decaying turbulence on a double-periodic square domain eventually becomes
organized in the form of a combination of two cells of positive and negative
circulations (see Matthaeus et al. 1991), the ‘final state’ of decaying turbulence in
a square domain with no-slip boundaries consists of a single large central cell with
either positive or negative circulation, surrounded by a shielding ring of opposite
vorticity (such that the total circulation of the flow is zero, as dictated by the no-slip
boundary condition). This long-time behaviour has been observed both in laboratory
experiments (Maassen et al. 2002) and in high-Reynolds-number simulations of
decaying two-dimensional turbulence (Clercx et al. 2001).

A remarkable observation was that in many cases the total angular momentum
L(t) of the flow (being randomly initialized, with L(t = 0) � 0) shows a sudden change
to non-zero values – a feature termed ‘spontaneous spin-up’. This spin-up of the fluid
is directly associated with the self-organization of the flow into a single larger vortex
structure (see Clercx, Maassen & van Heijst 1998; Clercx et al. 2001). In the next
stage of the flow evolution, the absolute angular momentum |L(t)| shows a very slow
decay to zero for very late times. It is important to note that the no-slip boundary
condition is a prerequisite for the spin-up, as the angular momentum L(t) is an
irrelevant quantity for the flow evolution on a double-periodic domain. Also, the
square domain geometry is important, spin-up being virtually absent on a circular
domain or on a long rectangular domain in which the ‘final state’ consists of a
linear (domain-filling) array of counter-rotating cells, see Maassen, Clercx & van
Heijst (2003). Obviously, the change of the total angular momentum during the
spontaneous spin-up is connected with the action of forces at the domain boundaries.
Numerical simulations have revealed that – for the case of a square geometry – the
contribution of the inviscid normal stress (i.e. the pressure) is much larger than the
effects of viscous shear and normal stresses.
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In recent direct numerical simulations of stochastically forced two-dimensional
turbulent flow in a square domain with no-slip boundary conditions we also observed
spontaneous spin-up behaviour, although remarkably different from the decaying
case. In the forced turbulence simulations one observes several consecutive events
of rapid increase and decrease of |L(t)|, often with sign reversal of L(t) between
neighbouring peaks in |L(t)|.

Obviously, the presence of no-slip boundaries has a significant effect on the
evolution of bounded two-dimensional turbulence, both for the decaying and the
continuously forced case. In this paper we will address some of the crucial features
of these wall effects. The role of boundary conditions in integral quantities like total
circulation, angular momentum, kinetic energy and enstrophy will be discussed in
§ 2. Some experimental and numerical results on decaying turbulence on a square
domain with no-slip walls will be reviewed in § 3, while § 4 presents some recent
numerical simulation results obtained for the case of a continuous time-dependent
forcing. For the latter case, the behaviour of the total angular momentum during the
flow evolution and the scaling behaviour of the flow will be discussed. Some general
conclusions will be drawn in § 5.

2. Some notes on boundary conditions and integral quantities
The two-dimensional motion of an incompressible, viscous fluid on a bounded

domain D is conveniently described in a Cartesian frame of reference x = (x, y, z),
with (x, y) the coordinates in the plane of the flow. The (horizontal) flow field is then
given by v = (u, v, 0) and the vorticity by ω = ∇ × v = (0, 0, ω), with ω = ∂v/∂x−∂u/∂y

the component in the (vertical) z-direction. For the case of a Newtonian fluid, the
motion is governed by the Navier–Stokes equation, which is in non-dimensional form

∂v

∂t
+ (v · ∇)v = −∇p +

1

Re
∇2v + f (2.1)

with t the time, p the pressure and Re = V L/ν the Reynolds number based on
characteristic velocity and length scales V and L, respectively, ν the kinematic viscosity
and f (x, t) an external forcing. Alternatively, one may describe the flow by the
vorticity equation, which is obtained by taking the curl of (2.1):

∂ω

∂t
+ (v · ∇)ω =

1

Re
∇2ω + q, (2.2)

where q(x, t) = (∇ × f ) · k̂, with k̂ the unit vector in z-direction.
Solutions of either equation have to satisfy conditions imposed by the domain

boundary ∂D. Impermeability of this boundary implies that the normal velocity
component should vanish, i.e.

v · n̂ = 0 on ∂D, (2.3)

with n̂ the unit (outward) normal on the boundary. After introduction of the

stream function Ψ by v = ∇ × k̂Ψ , this boundary condition can also be written
as Ψ = constant on ∂D. In the case of a physically realistic wall, the flow has to
satisfy the no-slip condition v|| =0 on ∂D, with v|| the tangential velocity component.
Combination of the no-slip and impermeability conditions leads to

v = 0 on ∂D. (2.4)
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Any solution of (2.1) for a viscous flow on a domain bounded by a physical wall has
to satisfy this condition (2.4). A description of the flow as a solution of the vorticity
equation (2.2) requires the value of ω on the domain boundary, but this value is
not provided a priori.† In numerical flow simulations based on the time-discretized
version of (2.2), the boundary value of ω is determined by using an influence matrix
method (for details, see Clercx 1997).

The strict no-slip boundary condition can be relaxed to some extent by considering
a stress-free boundary, which implies

(n̂ · τ )|| = 0 on ∂D, (2.5)

with τ the viscous stress tensor (note that the stress-free boundary condition is not
equivalent to a free-slip boundary condition for inviscid flows). For the particular
case of a square or rectangular domain, combination of the latter condition and the
impermeability condition (2.3) leads to

ω = 0 on ∂D. (2.6)

Imposing a periodic boundary condition for the flow in such a square domain, given
by {−1 � x � 1, −1 � y � 1}, would imply

v(−1, y) = v(1, y), v(x, −1) = v(x, 1), (2.7)

while the vorticity ω can take any value on ∂D, provided the periodicity condition is
satisfied.

In order to understand the global behaviour of the confined flow, it is useful to
describe the flow in terms of integral quantities. The total circulation Γ of the flow is
defined as

Γ =

∮

∂D

v(r, t) · ds =

∫

D

ω dA (2.8)

with r = (x, y) the position vector and ds an infinitesimal element of the boundary
∂D. It is straightforward to verify that Γ = 0 for both double-periodic boundaries
and no-slip boundaries; in contrast, the value of Γ is not determined for the flow
confined by a stress-free boundary. An expression for the rate of change of Γ can
be derived by integrating the vorticity equation (2.2) term by term over the whole
domain D. After applying either the no-slip or the stress-free boundary conditions
(2.4) and (2.6), respectively, one arrives at

dΓ

dt
=

1

Re

∮

∂D

n̂ · ∇ω ds +

∫

D

q dA. (2.9)

This result states that the total circulation of freely evolving (i.e. unforced, q = 0) flow
on a bounded domain D can only change through a net vorticity flux associated with
diffusion through the boundary ∂D. For the double-periodic and no-slip boundary
cases, Γ = 0 implies that dΓ/dt = 0, i.e. zero net leakage of vorticity through ∂D.
Only in the case of a stress-free boundary may the diffusive vorticity flux through
the boundary (and in the case of forced flow: a non-zero forcing

∫
D qdA) result in

a change in the total circulation Γ . In summary, for the various types of boundary

† A similar problem exists for solution of the Navier–Stokes equation (2.1), where the boundary
value for the pressure is not provided a priori.
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conditions the total circulation has the following properties:

double-periodic domain: Γ = 0,
dΓ

dt
= 0;

no-slip boundaries: Γ = 0,
dΓ

dt
= 0;

stress-free boundaries: Γ and
dΓ

dt
: no specified value.

The quasi-stationary late-time states of confined two-dimensional flows have been
analysed by a statistical mechanical approach, based on a system of point vortices for
which a maximum entropy solution was sought (Onsager 1949; Joyce & Montgomery
1973). Later, an alternative approach was based on a patchwise discretization of the
vorticity field (Miller 1990; Robert 1991). The predictions based on these (inviscid)
statistical mechanical theories crucially depend on the conditions imposed at the
boundaries of the domain, which were either double-periodicity or free-slip walls
(bounded inviscid flows). Examples of the application of the statistical mechanical
approach to inviscid flows in bounded square containers with free-slip walls were
provided by Pointin & Lundgren (1976) for the point-vortex discretization and by
Chavanis & Sommeria (1996) for the patchwise discretization of vorticity. Although
in terms of the total circulation the no-slip condition seems equivalent to double-
periodicity of the domain, the action of viscosity in such flows rules out any description
by inviscid theories. A detailed discussion of this issue is given by Brands, Maassen &
Clercx (1999).

Another relevant global quantity of the flow is its total angular momentum L,
defined with respect to the origin in the domain centre as

L =

∫

D

k̂ · (r × v) dA. (2.10)

An expression for its rate of change is derived by taking the time derivative and
inserting the Navier–Stokes equation (2.1) in the integral. For a flow on a domain
enclosed by an impermeable boundary (on which condition (2.3) applies) one thus
obtains

dL

dt
=

∮

∂D

pr · ds +
1

Re

∮

∂D

ω(r · n̂) ds − 2

Re
Γ + M(t), (2.11)

where

M(t) ≡ −1

2

∫

D

r2q(r, t) dA (2.12)

represents the net torque introduced by the forcing.
Obviously, in the unforced case (M =0) the change in angular momentum is entirely

due to the action of torques of boundary forces associated with the pressure (normal
stress) and viscous stresses (normal and shear stress). Note that a circular domain
forms a special case, because the torque of the normal wall stress is identically zero
then.
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Other global quantities that are useful in characterizing the flow are the total kinetic
energy (per unit density)

E =
1

2

∫

D

|v|2 dA =
1

2

∫

D

|∇Ψ |2 dA =
1

2

∫

D

ωΨ dA (2.13)

and the total enstrophy V , defined as

V =
1

2

∫

D

ω2 dA. (2.14)

For inviscid flows without forcing, equation (2.2) implies that vorticity is conserved,
i.e. Dω/Dt = 0. It can be shown that this property in turn implies that both E and
V are conserved as well. For viscous decaying flows the energy and enstrophy are no
longer invariant, and their evolution is given by

dE

dt
= − 1

Re

∫

D

ω2 dA = − 2

Re
V (t), (2.15)

dV

dt
= − 1

Re

∫

D

|∇ω|2 dA +
1

Re

∮

∂D

ω(n̂ · ∇ω) ds. (2.16)

In the case of double-periodic or stress-free boundary conditions, the boundary
integral in (2.16) is zero, and the enstrophy is apparently a monotonically decreasing
function of time. In the limit of vanishing viscosity (ν → 0) this implies that
limν → 0 dE/dt =0, i.e. the kinetic energy becomes a constant of motion.

For a flow bounded by no-slip walls, however, it is not clear a priori what value
the boundary integral on the right-hand side of (2.16) reaches in this limit, so that a
prediction of the time-behaviour of V is not possible.

To estimate the vorticity production at the no-slip boundaries a series of numerical
experiments on a dipole collision with a no-slip wall has been conducted (with a
high-resolution two-dimensional Chebyshev pseudo-spectral code, see Clercx 1997).
The flow induced by the travelling dipole and the subsequent dipole–wall collision is
not turbulent, but contains the essential ingredients needed to estimate the enstrophy
production at the walls. A well-defined initial condition of the flow has been chosen,
i.e. a condition satisfying zero velocity and vorticity at the domain boundaries at
t = 0. In order to satisfy these constraints, a dipolar vortex structure, consisting of
two equally strong, oppositely signed, isolated monopoles is released in the centre of
the container and allowed to collide with the boundary at t ≈ 0.33 (dimensionless time
units). This set-up enables a systematic study of the Reynolds-number dependence of
the vorticity production, and a number of normal and oblique dipole–wall collisions
has been investigated numerically. This is illustrated here with an example of an
oblique dipole–wall collision with Re = 2500 (based on the size and velocity of the
initial dipole). Four snapshots of the dipole–wall collision are shown in figure 1,
and in figure 2 we have plotted the vorticity and vorticity flux (∂ω/∂n) profiles,
respectively, at the boundary near the top right corner of the domain. High vorticity
values at the boundary are found during the collision, in this particular case five
times larger than the peak vorticity of the dipole itself, and the vorticity flux becomes
extremely large after impact of the dipole on the no-slip wall (see, e.g., the data for
t = 0.6). Many thin vorticity filaments and small-scale vortices have been produced. In
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(a) (b)

(c) (d)

Figure 1. Vorticity contour plots of a simulation of an oblique dipole–wall collision with
no-slip boundaries and Re =2500. (a) t = 0.2, (b) t = 0.4, (c) t = 0.6, (d) t = 1.0. The vortex
collision occurs at t ≈ 0.33.
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Figure 2. (a) Vorticity and (b) vorticity flux ∂ω/∂n at the boundary x = 1 (with −0.5 � y � 1)
and the boundary y = 1 (with 0 � x � 1) for t = 0.4 (solid), t = 0.6 (dashed) and t = 1.0 (dotted)
for the oblique dipole–wall collision experiment shown in figure 1 with Re = 2500.

order to resolve these small-scale structures, very high resolutions are needed during
the simulations. In this particular case, with Re =2500, a resolution of 385 × 385
Chebyshev polynomials is needed.
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This run has been conducted for relatively low Reynolds number, but a series of
Reynolds numbers has been considered (up to Re = 1.6 × 105) to reveal the scaling
of the enstrophy with the Reynolds number. It can be shown that the vorticity ωbl

contained in the thin boundary layers with thickness δbl ∝ 1/
√

Re scales as ωbl ∝
√

Re,
thus V ∝ ω2

blδbl ∝
√

Re. This scaling relation has been confirmed numerically
(Clercx & van Heijst 2002). As a consequence, the dissipation of kinetic energy
(see (2.15)) scales with 1/

√
Re instead of 1/Re.

3. Decaying turbulence in a square no-slip domain
In this section we will briefly review the most noteworthy properties of decaying

turbulent flow in a square domain with no-slip boundaries as observed in laboratory
experiments and in numerical simulations.

3.1. Experimental set-up

The experiments were carried out in a square container of dimensions 100 ×
100 × 30 cm3 (length × width × depth) which was filled with a two-layer salt
stratification, consisting of a layer of fresh water on top of a layer of salty water,
separated by an interfacial layer of typically a few centimetres depth.

Motion was generated by dragging a grid consisting of a linear array of vertical
rods (3 mm diameter) horizontally through the fluid with a constant speed V . After
having moved from one side to the opposite side of the tank, the grid was lifted out
of the water. At large enough towing speed (V � 15 cm s−1) the motion in the wake
of the grid is turbulent. In the homogeneous upper and lower layers, this motion is
essentially three-dimensional and thus decays rapidly. The motion in the interfacial
layer, however, is quasi-two-dimensional due to the action of the stratification: the
flow field is planar, with considerable vertical gradients. The flow in the interfacial
region was visualized by adding small neutrally buoyant polystyrene particles to the
fluid. Illuminated by strip lights from the side, their motion was monitored by a CCD
camera mounted above the container, and the data were stored on a computer. After
each experiment the data were processed digitally, providing quantitative information
about the flow field such as, e.g., the vorticity distribution.

Although strictly not two-dimensional, the planar motion in the interfacial region
shows the phenomenological characteristics of two-dimensional turbulence, namely
the emergence of larger, coherent vortex structures. This motion is very persistent,
the decay mainly governed by vertical diffusion. A discussion of the dissipation of
kinetic energy by vertical shearing (or vertical diffusion) in these experiments is given
by Maassen et al. (2002), and the dissipation of kinetic energy agrees with previous
observations obtained in experiments of freely decaying, stratified grid turbulence by
Fincham, Maxworthy & Spedding (1996). In particular, it was found that horizontal
dissipation accounts for less than 20 % of the total energy dissipation.

The effect of any initial angular momentum L0 of the fluid on the subsequent
flow evolution has been examined by using both symmetric and asymmetric grids.
The initial angular momentum introduced during the forcing was controlled by
changing the arrangement of the vertical rods in the rake. For the case of a not too
closely packed rake, the drag force FD of an individual rod can be estimated from
FD = 1

2
CDρV 2ld with ρ the fluid density, l the rod length, and CD the drag coefficient,

for which empirical values for different Re-values can be found in Blevins (1984).
Assuming that the (average) rod spacing is not too small, one may then estimate the
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(a) t = 10s (b) t = 1min 30s (c) t = 3min

(d) t = 7min 30s (e) t = 30min ( f ) t = 55min

Figure 3. Sequence of streak images of a laboratory experiment in a square tank. The fluid
motion was initialized by towing a rake horizontally through the fluid from one side to the op-
posite side. The images are taken from 10 s until 55min after towing the rake through the fluid.
The initial state (at t = 10 s) is characterized by L0 ≈ 0 and Re∗ � 5000. The tails of the streaks
are generated after digital processing of the images (courtesy of Maassen 2000).

contribution of each rod in the rake to the total torque excerted on the fluid, and
hence the total angular momentum introduced in the fluid during forcing.

The fluid motion generated by the grid forcing can be characterized by the Reynolds
number based on the grid parameters: ReM = V M/ν, with M the average rod spacing.
In the experiments discussed below, the parameter had typical values V = 15 cm s−1

and M = 4 cm, yielding ReM � 6000. As an alternative, one can use the Reynolds
number Re∗ = UW/ν based on the half-width W of the tank and the root-mean-
square velocity U of the initial flow field, as is usually done in numerical simulations.
In the experiments U was measured typically 10 s after the grid forcing was stopped,
yielding Re∗-values in the range 2000–5000. The decay rates of kinetic energy as
measured in these laboratory experiments with Re∗ ≈ 5000 are of the same order as
those computed in exactly two-dimensional flow simulations with Re ≈ 1500–2000
(see Clercx et al. 1999). It appears that the two-dimensional simulations and the
experiments can be compared directly for Re ≈ 0.4Re∗.

3.2. Observed flow evolution

A typical sequence of streak images taken during an experiment with approximately
zero initial angular momentum (L0 ≈ 0) is shown in figure 3. In the early stage of
the flow evolution, the small-scale motions introduced by the moving grid are clearly
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Figure 4. Sequence of vorticity contour plots for decaying two-dimensional turbulence in a
square domain with no-slip boundaries according to a numerical simulation with a spectral
code. The flow was initialized by a slightly disturbed array of 10 × 10 vortices with alternating
sense of rotation, with Re = 2000. The contour level increment is: (a) 3, (b) 1.5, (c) 0.8, (d) 0.4,
(e) 0.2, and (f ) 0.1.

visible. It is also seen how the flow becomes gradually dominated by larger vortex
structures. At a later stage (at t = 55 min) the flow consists of one large circulation
cell and a small cell of opposite circulation. This double-cell structure was rather
persistent, and continued to revolve until in the very late ‘final’ state it has changed
into one single cell filling the domain completely. In addition to the vortex structures
visible in the streak images, the vorticity contour plots obtained from these streak
images (although not shown here, examples can be found in Maassen et al. 2002)
reveal the existence of large gradients at the no-slip walls, in particular when vortices
are approaching. One can also observe in these vorticity contour plots how vorticity
filaments are peeled off from the walls, and then advected into the interior. These
features can be distinguished better in the high-resolution simulation results presented
in figure 4; the computations of this decaying flow were carried out with a spectral
code developed by Clercx (1997), which can effectively deal with the large gradients
in the flow field, in particular near the boundaries. In this numerical run the flow
was initialized by a 10 × 10 array of Gaussian vortices of alternating polarity. In
order to break any symmetry, the initial vortex positions and amplitudes were slightly
perturbed in a random way.

In figure 5 we have plotted the enstrophy V (t), the normalized enstrophy, V (t)/E(t),
and the palinstrophy

P (t) =
1

2

∫

D

|∇ω|2 dA. (3.1)

The palinstrophy is a measure of the vorticity gradients in the flow and represents an
enstrophy sink (see (2.16)). We can conclude that the enstrophy shows similar power-
law decay in each run irrespective of the perturbations of the initial array of 10 × 10
vortices, and the same conclusion can be drawn for the palinstrophy. The decay
of the enstrophy from these numerical simulations compares remarkably well with
the experimental data presented by Maassen et al. (2002): a power-law decay where
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Figure 5. The decay of (a) the enstrophy, (b) the normalized enstrophy and (c) the
palinstrophy of six runs with Re = 2000 are plotted as a function of the dimensionless time t .
The lines in (a) and (b) represent power-law decay according to t−1.4 and t−0.6, respectively.

V (t) ∝ t−1.5 and a steeper decay at late times. The numerical data reveal V (t) ∝ t−1.4

and also a steeper decay at late times. A similar conclusion can be drawn for the
normalized enstrophy: V (t)/E(t) ∝ t−0.5 in the experiment and V (t)/E(t) ∝ t−0.6 in
the numerical simulations. It should, however, be noted that the experimental data
for V (t)/E(t) show more scatter.

The experiments and numerical results clearly reveal the active role of the no-slip
boundaries as sources of large-amplitude vorticity filaments, even in the later stages
of the flow evolution. It should be noted that the occurrence of vorticity filaments
is not confined to regions close to the boundaries: as the vortex structures become
larger and larger, the advection of wall vorticity takes place over larger distances, well
into the interior of the flow domain. This behaviour is in sharp contrast with that
observed on double-periodic domains, see e.g. McWilliams (1984) and Santangelo
et al. (1989).

Both from the experimental and computed flow fields we determined the total
angular momentum L of the fluid with respect to the tank centre, and a very similar
behaviour was found: although the initial angular momentum was close to zero
(L0 ≈ 0), in almost all runs it was observed that L(t) quickly increased to a definite
value, after which it decreased rather slowly. This ‘spontaneous spin-up’ of the flow is
clearly seen in figure 6(a), which presents experimental results of the time evolution
of the normalized angular momentum L(t)/Lsb(t), with Lsb being the net angular
momentum of the same fluid in a rigid-body rotation with the same kinetic energy
E(t) at that instant. A similar change in the total angular momentum was observed in
runs with a randomly distributed initial vorticity, see e.g. Maassen et al. (2002), and
the present numerical simulations with a totally different initial vorticity field i.e. the
10 × 10 array of Gaussian vortices, show similar spontaneous spin-up (see figure 6(b, c)
for L(t) and L(t)/Lsb(t), respectively, for six different runs). This increase of |L(t)| is
associated with the formation of the larger circulation cell in or near the centre of
the domain. As discussed in § 2, a net change in L can only be established by the
action of torques due to wall stresses – again a demonstration of the role played by
the solid domain boundaries.
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Figure 6. (a) Graphical representation of the normalized net angular momentum L(t)/Lsb(t)
found in a number of experiments – including the one shown in figure 3 – of decaying
two-dimensional turbulence. The initial states are characterized by L0 ≈ 0 (dashed and
dashed-dotted lines) and |L0| > 0 (solid lines). The Reynolds number in these experiments
is Re∗ = 5000 (and Re ≈ 0.4Re∗ = 2000) (courtesy of S.R. Maassen 2000). (b) The angular
momentum L(t) for six runs from numerical simulations with Re = 2000, and (c) the normalized
angular momentum L(t)/Lsb(t) for these runs.
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Laboratory experiments in which an initial non-zero angular momentum L0 was
introduced by forcing with an asymmetric grid show an approximately similar flow
evolution, although the ‘final state’ of one large cell in the centre of the domain was
reached more rapidly than in cases with L0 ≈ 0. Evidence is provided in figure 6(a)
where the rapid spin-up is clearly visible for the runs with L0 
= 0. This behaviour
is also observed in the evolution of the total angular momentum, which shows a
much more rapid increase compared to the cases with L0 ≈ 0. These observations are
confirmed by the spectral flow simulations.

4. Forced turbulence in a square no-slip domain
Direct numerical simulations of forced two-dimensional turbulence in a square

domain with no-slip boundaries have been conducted. The scaling exponents (obtained
from vorticity structure functions), (hyper) flatness and PDFs clearly indicate strong
anisotropy of the turbulent flow and non-Gaussian statistics, as we will show below.
In order to put this work in the right framework, we will briefly compare our
results with those from either theoretical and numerical studies of two-dimensional
unbounded turbulence (where boundary effects are absent) or with some experimental
data (where perfect two-dimensionality is absent) to highlight the different conclusions
from the various approaches. In our view the results from the various set-ups are not
contradictory as such because different systems are considered. We should emphasize
that boundedness and the kind of boundary conditions may result in different
observations as anticipated from previous numerical studies on two-dimensional
turbulence and experiments on quasi-two-dimensional turbulent flows.

It was shown by Molenaar, Clercx & van Heijst (2004) that spin-up-like phenomena
may also be observed if a time-dependent forcing q(t, x) is applied to the vorticity
equation, generating a two-dimensional fluid flow from a set of zero initial conditions,
ω0(x) = 0. The stochastic forcing protocol is a first-order Markov chain, introduced by
Lilly (1969) and described in some detail by Maltrud & Vallis (1991). In discrete-time
notation, the first-order Markov chain with correlation coefficient r and amplitude
A0, applied to wavevector k is

q(n, k) = rq(n − 1, k) +
(
1 − r2

)1/2
A0e

iπψ(n,k), (4.1)

where the random variable ψ(n, k) is drawn from a Gaussian distribution. The
Markov chain is applied to a shell of wavenumbers |k| ∈ [7, 9] with A0 = 6.0 and
r = 0.98, see Molenaar et al. (2004) for details, and can be compared to a mechanical
stirring device, moving slowly through the fluid in a random order. The computational
resolution equals 161 or 257 nodes in each spatial direction, with a corresponding
time steps δt =3.4 × 10−4 and 1.35 × 10−4, respectively.

The integral-scale Reynolds number, denoted as Re∗, is based on the time- and
domain-averaged (root-mean-square) velocity scale

U ≡ 〈
√

2E(t)〉, (4.2)

achieving a value on the order of Re∗ � 3000. As in the case of decaying flow, for
these stochastically forced flows, the phenomenology is dominated by the generation
of a large circulation cell, occupying most of the interior of the domain. However,
in contrast to the decaying case, in the forced flow several consecutive events of
rapid build-up and collapse of the circulation cell occur, where a spontaneous sign
reversal of the angular momentum of the flow is possible from one event to the next.
Such a sequence of events is shown in figure 7, in three consecutive snapshots of
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(a) t = 800 (b) t = 900 (c) t = 1000

Figure 7. Snapshots of the vorticity evolution during the sign reversal of a large monopolar
vortex structure for Re � 3000, with vorticity levels ranging from ω < −5 (black) to ω > 5
(white).

the vorticity field, depicting a breakdown and a subsequent build-up, with opposite
sign, of a large coherent structure. These observations above seem to complement
the experimental results by Paret & Tabeling (1998), in which a large circulation
cell dominated the flow in electromagnetically driven thin fluid layer experiments
(where the flow dynamics is, however, strongly influenced by bottom friction). The
phenomenon of formation and subsequent breakdown of larger cells was observed
earlier by Sommeria (1986) in a laboratory experiment on steadily forced flows in
a thin layer of mercury, under the influence of viscosity. Owing to the very limited
experimental resolution, the mechanism explaining the large-scale reversals remained
unclear. Numerical simulations of two-dimensional turbulence with bottom friction in
a bounded domain with stress-free lateral boundaries (ω =0 on ∂D), were performed
by Verron & Sommeria (1987). These simulations support the experiments but,
obviously, boundary layers near the lateral walls, that might destabilize the large
central vortex, are absent in these simulations.

There seems to be an analogy with convection systems as the spontaneous sign-
reversals of a large circulation cell are similar to the spontaneous sign-reversals of
a feature known as ‘the wind’ in confined thermal convection, described by Niemela
et al. (2001), see also the review article by Kadanoff (2000). However, while these
authors speculated upon the cause of the observed large-scale instabilities, the definite
cause was not established†, while our computations suggest that the viscous boundary
layers may play a crucial role in these issues. Each collapse of the circulation cell is
caused by the destabilizing effect of intense boundary layers and is associated with a
decrease in the value of the absolute angular momentum. Consequently, the evolution
of other relevant integral quantities, such as the energy E(t) and the enstrophy Z(t),
is strongly influenced by the spin-up events.

Time series of these latter quantities during a Re∗ � 3000 computation, normalized
by their respective mean values, are shown in figure 8. In the energy time series the
spin-up effect is clearly recognizable in the form of clear peaks, reaching up to three

† An interesting theoretical analysis of the abrupt and irregular reversals of the large-scale
circulation in turbulent Rayleigh–Bénard convection was put forward recently by Fontenele Araujo,
Grossmann & Lohse (2004). It is based on the force and thermal balance on a single plume parcel.
From the resulting nonlinear equations, related to the Lorenz equations, a phase diagram in the
plane set up by the Prandtl and Rayleigh numbers can be constructed showing transitions to a
regime of chaotic wind reversals.
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Figure 8. Evolution of the normalized energy, E′(t), and enstrophy, V ′(t).

times average values. These peaks correspond to a condensation of energy within the
large circulation cell, as was conjectured by Kraichnan (1967).

The evolution of the enstrophy is directly influenced by the formation of viscous
boundary layers at the no-slip walls. These boundary layers are sources of opposite-
signed vorticity, as compared to the central cell. Hence, these structures are sources
of enstrophy V (t), which is proportional to the destruction term in the global energy
balance,

dE(t)

dt
= − 2

Re
V (t) +

∫

D

f · u dA, (4.3)

where the inner product term on the right-hand side represents the energy input
due to the forcing. Note that the simulation results of figures 7 and 8 are shown
in dimensionless simulation time units. One could reformulate time in terms of a
turnover time of the largest eddies, Te, which is defined by means of the maximum
measured root-mean-square velocity and the half-width of the domain, W ,

Te =
W

max
t

√
2E(t)

. (4.4)

In such a formulation, the computations shown in figure 8 run up to 300Te.
The global phenomenological picture is in sharp contrast with observations of

forced two-dimensional turbulence on a double-periodic domain. There the usual end
state is a domain-filling dipole structure, which was first observed in direct numerical
simulations by Hossain, Matthaeus & Montgomery (1983) and later by Smith &
Yakhot (1993, 1994). Strong deviations from the double-periodic setting, due to the
presence of boundary layers, had already been observed by Li & Montgomery (1996)
and Li et al. (1996, 1997), in the case of decaying flow in a circular no-slip domain.
These authors noted the change in early-time dissipative properties of the flow, under
the action of boundary-layer development. In this respect, our observations highlight
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Figure 9. (a) Double logarithmic plot of normalized vorticity structure functions, of order
n= 2 (stars), n= 4 (circles) and n= 6 (triangles) versus separation length |r|, where the solid line
corresponds to ζ (n) = 2/3. (b) Double logarithmic plot of flatness (circles) and hyperflatness
of (b) order n= 3 (filled triangles) against separation length.

a sharp difference with continuously forced flows in a double-periodic domain, where
often some kind of additional energy dissipation is applied to achieve a stationary
energy balance, such as e.g. the Ekman damping applied by Maltrud & Vallis (1991)
or the hypo-viscosity operator applied by Borue (1993), where an inverse dissipation
operator is added to the equations of motion with ν∆−p , for p = 4, 6, 8, . . . . For the
forced, wall-bounded flows considered here, it is found that the no-slip walls provide
a natural energy dissipation mechanism, by means of the generation of viscous
boundary layers.

The dramatically different phenomenology of the forced flows on a square no-
slip domain, as opposed to the square double-periodic domain is also likely to
have a pronounced influence on the corresponding scaling behaviour. Especially, the
vorticity statistics are thought to deviate, since small-scale filaments, in the form of
detached viscous boundary layers, play such an important role in the dynamics. The
most important statistical tool used to analyse the flow is based on spatial vorticity
differences, taken over the length scale r = |r|,

δω(r) = ω(x + r) − ω(x). (4.5)

Raising the differences to the power n followed by ensemble averaging 〈·〉, yields the
nth-order vorticity structure function

Sn(ω(r)) = 〈(δω(r))n〉, (4.6)

which is assumed to show a scaling behaviour with the separation length, as a function
of order n,

Sn(ω(r)) ∼ rζ (n). (4.7)

According to the classical theory of two-dimensional turbulence, the isotropic situation
should yield zero scaling exponents for the vorticity structure functions of all orders.

Vorticity structure functions of orders 2, 4 and 6 are plotted against separation
length in a double logarithmic graph in figure 9(a). The convergence of the statistics
has been checked with the method of Belin, Tabeling & Willaime (1996) and it was
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n 2 4 6

ζ (n) 1.3 ± 0.1 2.2 ± 0.1 2.7 ± 0.2

Table 1. Scaling exponents for the structure functions of order n.

proved by Molenaar (2004) to be sufficient for the vorticity structure functions of
orders up to 6 (note that record lengths are O(106) points). Clearly, our results show
non-zero scaling exponents for the wall-bounded, purely two-dimensional setting, with
the value of the exponents listed in table 1.

The measurements of vorticity increments are taken in the centre of the domain,
throughout a small square B(r) of side r . In such a manner one might reduce
the influence of the boundaries and achieve a more or less isotropic situation. It
was argued by Paret, Jullien & Tabeling (1999) that experiments in a quasi-two-
dimensional flow in a square cell yielded isotropic results for the vorticity statistics,
after sufficient record lengths were averaged. These authors observed zero scaling
exponents for the vorticity structure functions up to order 10.

The solid line in figure 9(a) shows ζ (n) = 2/3, corresponding to the upper bound
on the scaling exponents of vorticity structure functions of any order in the isotropic
situation, as derived by Eyink (1995). A basic assumption for Eyinks’ estimate was
a constant enstrophy flux. Clearly, our observations for the second-order structure
function exponent exceed 2/3, but are not as steep as the prediction ζ (2) > 2, again for
the isotropic situation, by Tran & Bowman (2002). An explanation for the deviations
from both the Eyink model and the Tran & Bowman prediction may be found in
both the non-constant enstrophy flux on a bounded domain, due to the generation
of vorticity in the viscous boundary layers, and the anisotropy of the flow.

To test for Gaussianity in the scaling results, figure 9(b) shows the flatness and
hyperflatness of order n= 3, corresponding to the data in figure 9(a). These quantities
are respectively defined as

F (r) :=
S4(ω(r))

(S2(ω(r)))2
and H2n(r) :=

S2n(ω(r))
(S2(ω(r)))n

for n = 3. (4.8)

If H2n(r) is independent of separation length r , no intermittency is present, which,
by the multi-fractal scaling model, results in scaling exponents ζ (2n) = nζ (2) or
ζ (n) ∝ n.

The corresponding Gaussian values are 3 and 15 for the flatness and third-
order hyperflatness, respectively, from which the computational data deviate strongly,
moving towards smaller scales. On the other hand, both the results for the (hyper)
flatness and the scaling exponents of the vorticity structure functions may be different
for higher integral-scale Reynolds numbers, where the behaviour is different. At
present higher integral-scale Reynolds numbers are not attainable computationally
owing to the necessary long-time statistical averaging. Currently, new computational
techniques are being developed for this purpose.

Finally, we compare the normalized probability distribution function (PDF) of
vorticity increments in the wall region with that measured in the interior of the
domain. In the preceding paragraphs we deliberately took measurements of vorticity
increments at some distance from the domain boundary, to avoid obvious bias
expected to occur near the wall. For three-dimensional turbulence Benzi et al. (1999)
compared small-scale velocity statistics measured near a no-slip wall with statistics
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Figure 10. Log-linear plot of the PDF, P (s ′), of normalized vorticity increments, s ′(r), with
r = 0.006 (stars), r = 0.012 (circles) and r =0.024 (filled triangles), where the solid line represents
a Gaussian normal PDF, (a) near the wall and (b) in the interior of the domain. Measurements
in (a) were taken in the wall-normal direction.

measured in the bulk of the flow, and they found an increase in deviations from
Gaussian behaviour when moving towards the wall. In figure 10(a) we show the PDF
of normalized vorticity increments in the wall region, measured in the normal-wall
direction, at three separation lengths, and the corresponding PDF in the interior in
figure 10(b). Clearly, deviations from the normal distribution, shown in the figure as
solid lines, are very pronounced in the near-wall region, although smaller deviations
also occur in the interior for separation lengths r = 0.006 and r = 0.012. In the wall
region the deviations are still marked for r = 0.024, but this is not the case in the
interior.

5. Discussion and conclusions
The type of boundary condition apparently plays an important role in the evolution

of confined two-dimensional turbulence, both for the decaying and the continuously
forced case. It has been found in laboratory experiments as well as numerical
simulations of decaying two-dimensional turbulence in a square domain with no-
slip walls that the quasi-stationary late-time state of the flow consists of a single
domain-filling cell, surrounded by a band of opposite-signed vorticity. This final state,
ultimately decaying towards the fundamental ‘Stokes mode’ in a square domain (see
Van de Konijnenberg, Flór & van Heijst 1998), is in marked contrast with late-time
behaviour observed for the cases of stress-free boundaries or double-periodicity: in the
latter case the flow becomes organized into a pair of equal cells of opposite vorticity,
while for stress-free walls one commonly observes organization into an asymmetric
dipolar flow structure (Brands et al. 1999). Laboratory experiments – with initial
motion (Re∗ ≈ 5000) generated by a translating grid – and high-resolution numerical
simulations – initialized by a perturbed array of 10 × 10 vortices (Re =2000) – have
revealed the crucial role of the no-slip walls, namely as sources of high-amplitude
vorticity filaments. These filamentary structures are advected away from the walls,
and hence affect the flow evolution in the interior. A remarkable feature in the
evolution is the so-called ‘spontaneous spin-up’, corresponding to the formation of
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the domain-filling cell (which can be in either rotation sense). At this stage the total
angular momentum L shows a rapid increase (even when starting with an initial
state with L0 ≈ 0), thus revealing the role of the walls in providing forces (both
normal and shear stresses) and torques that lead to a change in L. Experiments
and numerical simulations have revealed that an initial non-zero angular momentum
|L0| > 0 promotes the spin-up significantly.

The remarkable role of no-slip walls is also observed in high-resolution simulations
of continuously forced turbulence. In confined forced flows, the self-organizing
tendency may be disrupted by the disorganizing ‘stirring’ introduced by a randomly
arranged forcing: in the case of strong forcing the flow may never reach an organized
state. On the other hand, when weakly forced the flow will become organized as a
domain-filling cell, which is only slightly perturbed by the forcing applied. In § 4 we
have shown simulation results for the intermediate case of moderate forcing, in which
the no-slip sidewalls also play an important role in the flow evolution. In this forcing
regime the flow becomes organized into a single large cell, which is subsequently
destroyed due to lateral erosion by filamentary vorticity structures generated at the
no-slip boundaries. After this state of disorder, the flow becomes organized again in a
domain-filling cell with arbitrary rotation sense. Each time such a large cell is formed
the total angular momentum L and kinetic energy E show a significant increase.
A similar behaviour is seen in the evolution of the total enstrophy V , which is of
course due to the enhanced formation of vorticity filaments at the solid walls. At the
stage when the central cell is destroyed, both L, E and V show a rapid decrease.
This repeated process of cell build-up and destruction is in marked contrast to the
flow behaviour observed in forced two-dimensional turbulence on a double periodic
domain (see e.g. Hossain et al. 1983; Smith & Yakhot 1993, 1994).

Because of the role of the no-slip walls as sources of high-amplitude vorticity
filaments, it is not surprising that the scaling behaviour – in particular in the vorticity
statistics – is also different compared to unconfined, isotropic two-dimensional
turbulence. This behaviour has been examined by using the vorticity structure function
Sn (of order n) and the associated flatness F and hyperflatness H2n. The scaling
exponents found in the numerical flow simulations for Re∗ � 3000 are remarkably
different from those according to the classical theory of unbounded two-dimensional
turbulence. The flatness and hyperflatness both appeared to deviate strongly for the
corresponding Gaussian values. A similar deviation was found in the probability
distribution function of vorticity increments, in particular when moving closer to the
walls.

These observations reveal that the presence of no-slip boundaries affects the
behaviour of two-dimensional turbulence (either continuously forced or decaying)
in a rather dramatic way, their influence not being restricted to regions close to
the perimeter but essentially extending over the full domain. Any comparison of
laboratory experiments or numerical simulations of two-dimensional flows confined
by no-slip walls with corresponding results for inviscid flow on doubly periodic
domains requires caution.
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